Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI
نویسندگان
چکیده
Arctic vegetation distribution is largely controlled by climate, particularly summer temperatures. Summer temperatures have been increasing in the Arctic and this trend is expected to continue. Arctic vegetation has been shown to change in response to increases in summer temperatures, which in turn affects arctic fauna, human communities and industries. An understanding of the relationship of existing plant communities to temperature is important in order to monitor change effectively. In addition, variation along existing climate gradients can help predict where and how vegetation changes may occur as climate warming continues. In this study we described the spatial relationship between satellite-derived land surface temperature (LST), circumpolar arctic vegetation, and normalized difference vegetation index (NDVI). LST, mapped as summer warmth index (SWI), accurately portrayed temperature gradients due to latitude, elevation and distance from the coast. The SWI maps also reflected NDVI patterns, though NDVI patterns were more complex due to the effects of lakes, different substrates and different-aged glacial surfaces. We found that for the whole Arctic, a 5 °C increase in SWI along the climate gradient corresponded to an increase in NDVI of approximately 0.07. This result supports and is of similar magnitude as temporal studies showing increases of arctic NDVI corresponding to increases in growing season temperatures over the length of the satellite record. The strongest positive relationship between NDVI and SWI occurred in partially vegetated and graminoid vegetation types. Recently deglaciated areas, areas with many water bodies, carbonate soil areas, and high mountains had lower NDVI values than predicted by SWI. Plant growth in these areas was limited by substrate factors as well as temperature, and thus is likely to respond less to climate warming than other areas. © 2007 Elsevier Inc. All rights reserved.
منابع مشابه
Satellite-derived vegetation index and cover type maps for estimating carbon dioxide flux for arctic tundra regions
The spatial variabi]Lity and co-variability of two different types of remote sensing derivatives that portray vegetation and geomorphic patterns are analyzed in the context of estimating regional-scale CO 2 flux from land surfaces in the arctic tundra. For a study area encompassing the Kuparuk River watershed of the North Slope of Alaska, we compare satellite-derived maps of the normalized diff...
متن کاملEstimation of land surface temperature over Delhi using Landsat-7 ETM+
Land surface temperature (LST) is important factor in global change studies, in estimating radiation budgets in heat balance studies and as a control for climate models. The knowledge of surface temperature is important to a range of issues and themes in earth sciences central to urban climatology, global environmental change, and human-environment interactions. In the study an attempt has been...
متن کاملThe Relationship Between Urban Land Cover And Surface Kinetic Temperature: A Case Study In Terre Haute, Indiana
This research examines the relationship between surface kinetic temperature (SKT), land cover, and the Normalized Difference Vegetation Index (NDVI) for a small city in the Midwestern United States. Color aerial photography was examined to create high resolution maps of land cover for 377 random quadrats. Average NDVI for each quadrat was determined from hyperspectral aerial imagery, whereas th...
متن کاملSpatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized difference vegetation index
The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geo...
متن کاملسنجش اثرات سبزینگی گیاهی در تحولات فضایی شدت جزیره حرارتی سطح کلانشهر تهران با استفاده از تصاویر ماهوارهای LANDSAT8 و ASTER
The simplest definition of urbanization is that urbanization is the process of becoming urban. Urban climate is defined by specific climate conditions which differ from surrounding rural areas. Urban areas, for example, have higher temperatures than surrounding rural areas and weaker winds. Land Surface Temperature is an important phenomenon in global climate change. As the green house gases in...
متن کامل